Multipopulation Spin Models: A View from Large Deviations Theoretic Window

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large Deviations in Quantum Spin Chain

We show the full large deviation principle for KMS-states and C∗finitely correlated states on a quantum spin chain. We cover general local observables. Our main tool is Ruelle’s transfer operator method.

متن کامل

Large Deviations for Quantum Spin Systems

We consider high temperature KMS states for quantum spin systems on a lattice. We prove a large deviation principle for the distribution of empirical averages XΛ := 1 |Λ| ∑ i∈Λ Xi, where the Xi’s are copies of a self-adjoint element X (level one large deviations). From the analyticity of the generating function, we obtain the central limit theorem. We generalize to a level two large deviation p...

متن کامل

Large Deviations and Random Energy Models

A unified treatment for the existence of free energy in several random energy models is presented. If the sequence of distributions associated with the particle systems obeys a large deviation principle, then the free energy exists almost surely. This includes all the known cases as well as some heavy-tailed distributions. 1. Introduction. The purpose of this note is to bring out the essence in...

متن کامل

Large deviations for currents in the spin-boson model

We consider a finite quantum system coupled to quasifree thermal reservoirs at different temperatures. Under the assumptions of small coupling and exponential decay of the reservoir correlation function, the large deviation generating function is shown to be analytic on a compact set. Our method is different from the spectral deformation technique which was introduced recently in the study of s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematics

سال: 2018

ISSN: 2314-4629,2314-4785

DOI: 10.1155/2018/9417547